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What does “solving parametric systems”mean?

For a parametric polynomial system F ⊂ k[u][x], the following
problems are of interest:

1. compute the values u of the parameters for which F (u) has
solutions, or has finitely many solutions.

2. compute the solutions of F as continuous functions of the
parameters.

3. provide an automatic case analysis for the number
(dimension) of solutions depending on the parameter values.
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Triangular decompositions of a constructible set
A pair R = [T , h] is called a regular system if T is a regular chain,
and h is a polynomial which is regular w.r.t sat(T ).

Theorem (CGLMP, CASC2007)

Every constructible set can be written as a finite union of the zero

sets of regular systems.

The constructible set






x(1 + y) − s = 0
y(1 + x) − s = 0

x + y − 1 6= 0
(1)

can be represented by two regular systems

R1 :
T1 =

{

(y + 1)x − s

y2 + y − s

h1 = y − 2s + 1
R2 :

T2 =







x + 1
y + 1
s

h2 = 1



Specialization

Definition
A regular system R := [T , h] specializes well at u ∈ Kd if
[T (u), h(u)] is a regular system of K[x] after specialization and no
initials of polynomials in T vanish during the specialization.

Example

R1 :
T1 =

{

(y + 1)x − s

y2 + y − s

h1 = y − 2s + 1

does not specializes well at s = 0 or at s = 3
4

R1(0) :
T1(0) =

{

(y + 1)x
(y + 1)y

h1(0) = y + 1
R1(

3

4
) :

T1(
3
4) =

{

(y + 1)x − 3
4

(y − 1
2)(y + 3

2)
h1(

3
4) = y − 1

2



Comprehensive Triangular Decomposition (CTD)

Definition
Let CS be a constructible set of k[u, x]. A comprehensive

triangular decomposition of CS is given by :

1. a finite partition C of the parameter space Kd ,

2. for each C ∈ C a set of regular systems RC s.t. for u ∈ C

2.1 each of the regular systems R ∈ RC specializes well at u

2.2 and we have
CS(u) =

⋃

R∈RC

Z (R(u)).

Let F := {x(1 + y) − s = 0, y(1 + x) − s = 0, x + y − s 6= 0}.

A CTD of F is as follows:

1. s 6= 0 and s 6= 3
4 −→ {R1}

2. s = 0 −→ {R2, R3}

3. s = 3
4 −→ {R4}

R1 :
T1 =



(y + 1)x − s

y2 + y − s

h1 = y − 2s + 1
R2 :

T2 =

8

<

:

x + 1
y + 1
s

h2 = 1

R3 :
T3 =

8

<

:

x

y

s

h3 = 1

R4 :
T4 =

8

<

:

2x + 3
2y + 3
4s − 3

h4 = 1



Separation

Definition
A squarefree regular system R := [T , h] separates well at u ∈ Kd

if: R specializes well at u and R(u) is a squarefree regular system
of K[x].

R1 :
T1 =

{

(y + 1)x − s

y2 + y − s

h1 = y − 2s + 1

specializes well but not separates well at s = −1
4 :

R1(−
1

4
) :

T1(−
1
4) =

{

(y + 1)x + 1
4

(y + 1
2)2

h1(−
1
4) = y + 3

2

where the second polynomial of T1(−
1
4) is not squarefree.



Disjoint Squarefree Comprehensive Triangular
Decomposition (DSCTD)

Definition
A disjoint squarefree comprehensive triangular decomposition of a
constructible set CS is given by:

1. a finite partition C of the parameter space Kd ,

2. for each C ∈ C a set of squarefree regular systems RC such
that for each u ∈ C :

2.1 each R ∈ RC separates well at u,
2.2 the zero sets Z (R(u)), for R ∈ RC , are pairwise disjoint and

CS(u) =
⋃

R∈RC

Z (R(u)).



DSCTD and complex root counting
Let F := {x(1 + y) − s = 0, y(1 + x) − s = 0, x + y − s 6= 0}. A
DSCTD of F is as follows:

1. s 6= 0, s 6= −1
4 , s 6= 3

4 −→ {R1}

2. s = 0 −→ {R2, R3}

3. s = 3
4 −→ {R4}

4. s = −1
4 −→ {R5}

where

R1 :
T1 =



(y + 1)x − s

y2 + y − s

h1 = y − 2s + 1
R2 :

T2 =

8

<

:

x + 1
y + 1
s

h2 = 1

R3 :
T3 =

8

<

:

x

y

s

h3 = 1

R4 :
T4 =

8

<

:

2x + 3
2y + 3
4s − 3

h4 = 1

R5 :
T5 =

8

<

:

2x + 1
2y + 1
4s + 1

h5 = 1

Therefore, we conclude that: if (s + 1
4)(s − 3

4) = 0, system (1)
has 1 complex root; otherwise system (1) has 2 complex roots.



Real root classification of semi-algebraic system

A parametric semi-algebraic system (SAS) is of the following form:















p1(u, x) = 0, ..., pr (u, x) = 0,

g1(u, x) ≥ 0, ..., gk(u, x) ≥ 0,

gk+1(u, x) > 0, ..., gt(u, x) > 0,

h1(u, x) 6= 0, ..., hs(u, x) 6= 0,

(2)

Here all polynomials are with rational number coefficients. The
system is denoted by a quadruple [F , N, P, H], where

◮ F = [p1, . . . , pr ]

◮ N = [g1, . . . , gk ], P = [gk+1, . . . , gt ], H = [h1, . . . , hs ]

For an integer n, the problem of real root classification is to
provide conditions on parameters s.t. the system has exactly n
distinct real solutions.



Delayed computation and border polynomial

In (L. Yang, X.R. Hou & B.C. Xia, 01), the author proposed the
idea of delayed computation for solving semi-algebraic systems:

◮ Decompose original system into a family of triangular systems

◮ Solve each sub-system forgetting degenerate parametric values

◮ Wrap all the degenerate values as a border polynomial

◮ Add the border polynomial into the input system and start
over

Definition
Let S(u, x) be a parametric semi-algebraic system. A polynomial
R(u) is called a border polynomial of S if

(a) S(u) has only finitely many real solutions when R(u) 6= 0

(b) the number of distinct real solutions of S is constant in each
connected component of R(u) 6= 0 in Rd



Output of RealRootClassification

The output of RealRootClassification [F , N, P, H, n] is a pair
[Φ(u), bp(u)] interpreted by the following theorem.

Theorem
Provided the border polynomial bp(u) does not vanish, the system

has n distinct real solutions if and only if a logic formula Φ(u)
holds.

Here the logic formula Φ(u) can be

◮ a quantifier free formula, like

(a > 0 ∧ a + b < 0) ∨ (a − b2 < 0)

◮ a quantifier free formula plus a description of which root of a
regular chain, like a > 0 and (b, c) is the first root of the
regular chain [c − b, b2 − 1].

Such a description can be encoded as a regular semi-algebraic set.



Regular semi-algebraic set

Let [Q, T , L] be a triple of Q[w, y] where

◮ Q(w) is a quantifier-free formula defining a nonempty set S ,

◮ T = {t1, . . . , tm} is a squarefree regular chain, with main
variables y = y1, · · · , ym and free variables w = w1, . . . ,ws

◮ for each point α of S , T separates well at α and T (α) has at
least one real solution,

◮ L is a list of root indices of T

The zero set of [Q, T , L] is defined as the set of (α, β) ∈ Rs+m s.t.

◮ α satisfies Q and β = (β1, . . . , βm) is a real solution of
T (α, y)

◮ if L is empty, then β is any real solution of T (α, y); otherwise
there exists an Lj in L s.t. each βi is the Lj ,i -th real solution
of ti (α, β1, ..., βi−1, yi ) w.r.t yi .

The zero set of [Q, T , L] as defined above is called a regular
semi-algebraic set.



Theorem
A regular semi-algebraic set is not empty and every semi-algebraic

set can be decomposed as a finite union of regular semi-algebraic

sets.

Algorithm: RealRootClassification

Input: A parametric semi-algebraic system S and a solution
number to query

Output: Necessary and sufficient conditions on the parameters
for the system to have a given number of solutions
provided its border polynomial does not vanish. The
conditions are encoded by a list of regular
semi-algebraic sets.



Example

Given a system

F :=







x(y + 1) − s = 0
y(x + 1) − s = 0

x + y − 1 > 0

By RealRootClassification, we get the following theorem

Theorem
Provided the border polynomial bp = s(4s + 1)(4s − 3) 6= 0, the

system F has real solutions if and only if 4s − 3 > 0.

Adding bp = 0 into F , one finds that the system has no real
solutions. So the final conclusion is that

Corollary

The system F has real solutions if and only if 4s − 3 > 0.



Border polynomial and related notions (I)

Let R = [T , h] be a squarefree regular system of Q[u, x], where
x = mvar(T ). Denote

bp := sqrres(sep(T )h, T ).

Theorem
Considering the real solutions of R, then the polynomial bp is a

border polynomial of the semi-algebraic system R.

Theorem
Considering the complex solutions of R, then the variety of bp is

the minimal discriminant variety of the constructible set Z (R).



Border polynomial and related notions (II)

Theorem
Let CS be a parametric constructible set of Q[u, x]. Let d be the

number of parameters. Assume that for almost all parameter

values u, CS(u) has finitely many complex solutions. Then one

could compute a disjoint squarefree CTD of CS s.t.

◮ there exists one and only one cell C , whose complement in Cd

is a hypersurface

◮ the hypersurface is a discriminant variety of CS

◮ let bp(u) be the squarefree polynomial defining the

hypersurface, then bp is a border polynomial of the

semi-algebraic set CS ∩ Rd


