Solving Parametric Polynomial Systems with the RegularChains Library in Maple

Changbo Chen ${ }^{1}$, François Lemaire ${ }^{2}$, Marc Moreno Maza ${ }^{3}$, Bican Xia ${ }^{4}$, Rong Xiao ${ }^{4}$, and Yuzhen Xie ${ }^{3}$

University of Western Ontario, Canada
Université de Lille 1, France
Massachusetts Institute of Technology, USA
Peking University, China
June 23, 2009

What does "solving parametric systems" mean?

For a parametric polynomial system $F \subset \mathbf{k}[\mathbf{u}][\mathbf{x}]$, the following problems are of interest:

1. compute the values u of the parameters for which $F(u)$ has solutions, or has finitely many solutions.
2. compute the solutions of F as continuous functions of the parameters.
3. provide an automatic case analysis for the number (dimension) of solutions depending on the parameter values.

Related work $\left(C^{3}\right)$

- (Comprehensive) Gröbner bases (CGB): (V. Weispfenning, 92, 02), (D. Kapur 93), (A. Montes, 02), (A. Suzuki \& Y. Sato, 03, 06), (D. Lazard \& F. Rouillier, 07), (Guillaume Moroz, 06) and others.
- Cylindrical algebraic decompositions (CAD): (G.E. Collins 75), (G.E. Collins, H. Hong 91), (H. Hong 92), (S. McCallum 98), (A. Strzeboński 00), (C.W. Brown 01) and others.
- (Comprehensive) triangular decompositions (CTD): (S.C. Chou \& X.S. Gao 92), (X.S. Gao \& D.K. Wang 03), (D. Kapur 93), (D.M. Wang 05), (L. Yang, X.R. Hou \& B.C. Xia, 01), (C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza \& W. Pan, 07) and others.

Outline

- comprehensive triangular decomposition of parametric constructible sets
- complex root classification
- real root classification
- border polynomial and related notions
- Maple demo

Triangular decompositions of a constructible set

A pair $R=[T, h]$ is called a regular system if T is a regular chain, and h is a polynomial which is regular w.r.t $\operatorname{sat}(T)$.

Theorem (CGLMP, CASC2007)

Every constructible set can be written as a finite union of the zero sets of regular systems.
The constructible set

$$
\left\{\begin{array}{r}
x(1+y)-s=0 \tag{1}\\
y(1+x)-s=0 \\
x+y-1 \neq 0
\end{array}\right.
$$

can be represented by two regular systems

$$
R_{1}:\left|\begin{array}{l}
T_{1}=\left\{\begin{array}{l}
(y+1) x-s \\
y^{2}+y-s
\end{array}\right. \\
h_{1}=y-2 s+1
\end{array} \quad R_{2}:\right| \begin{aligned}
& T_{2}=\left\{\begin{array}{l}
x+1 \\
y+1 \\
s
\end{array}\right. \\
& h_{2}=1
\end{aligned}
$$

Specialization

Definition

A regular system $R:=[T, h]$ specializes well at $u \in \mathbf{K}^{d}$ if [$T(u), h(u)]$ is a regular system of $\mathbf{K}[\mathbf{x}]$ after specialization and no initials of polynomials in T vanish during the specialization.

Example

$$
R_{1}: \left\lvert\, \begin{aligned}
& T_{1}=\left\{\begin{array}{l}
(y+1) x-s \\
y^{2}+y-s
\end{array}\right. \\
& h_{1}=y-2 s+1
\end{aligned}\right.
$$

does not specializes well at $s=0$ or at $s=\frac{3}{4}$
$R_{1}(0):\left|\begin{array}{l}T_{1}(0)=\left\{\begin{array}{l}(y+1) x \\ (y+1) y\end{array} \quad R_{1}\left(\frac{3}{4}\right):\right. \\ h_{1}(0)=y+1\end{array}\right| \begin{aligned} & T_{1}\left(\frac{3}{4}\right)=\left\{\begin{array}{l}(y+1) x-\frac{3}{4} \\ \left(y-\frac{1}{2}\right)\left(y+\frac{3}{2}\right) \\ h_{1}\left(\frac{3}{4}\right)=y-\frac{1}{2}\end{array}\right) .\end{aligned}$

Comprehensive Triangular Decomposition (CTD)

Definition

Let $C S$ be a constructible set $\mathbf{k} \mathbf{k} \mathbf{u}, \mathbf{x}]$. A comprehensive triangular decomposition of $C S$ is given by :

1. a finite partition \mathcal{C} of the parameter space \mathbf{K}^{d},
2. for each $C \in \mathcal{C}$ a set of regular systems \mathcal{R}_{C} s.t. for $u \in C$
2.1 each of the regular systems $R \in \mathcal{R}_{C}$ specializes well at u
2.2 and we have

$$
C S(u)=\bigcup_{R \in \mathcal{R}_{C}} Z(R(u))
$$

Let $F:=\{x(1+y)-s=0, y(1+x)-s=0, x+y-s \neq 0\}$.
A CTD of F is as follows:

1. $s \neq 0$ and $s \neq \frac{3}{4} \longrightarrow\left\{R_{1}\right\}$

$$
\text { 2. } s=0 \longrightarrow\left\{R_{2}, R_{3}\right\}
$$

$$
\text { 3. } s=\frac{3}{4} \longrightarrow\left\{R_{4}\right\}
$$

$$
\begin{aligned}
& R_{1}:\left|\begin{array}{l}
T_{1}=\left\{\begin{array}{c}
(y+1) x-s \\
y^{2}+y-s \\
h_{1}=y-2 s+1
\end{array} \quad R_{2}:\right.
\end{array}\right| \begin{array}{l}
T_{2}=\left\{\begin{array}{l}
x+1 \\
y+1 \\
s
\end{array}\right. \\
h_{2}=1
\end{array}
\end{aligned}
$$

Separation

Definition

A squarefree regular system $R:=[T, h]$ separates well at $u \in \mathbf{K}^{d}$ if: R specializes well at u and $R(u)$ is a squarefree regular system of $\mathbf{K}[\mathbf{x}]$.

$$
R_{1}: \left\lvert\, \begin{aligned}
& T_{1}=\left\{\begin{array}{l}
(y+1) x-s \\
y^{2}+y-s
\end{array}\right. \\
& h_{1}=y-2 s+1
\end{aligned}\right.
$$

specializes well but not separates well at $s=-\frac{1}{4}$:

$$
R_{1}\left(-\frac{1}{4}\right): \left\lvert\, \begin{aligned}
& T_{1}\left(-\frac{1}{4}\right)=\left\{\begin{array}{l}
(y+1) x+\frac{1}{4} \\
\left(y+\frac{1}{2}\right)^{2}
\end{array}\right. \\
& h_{1}\left(-\frac{1}{4}\right)=y+\frac{3}{2}
\end{aligned}\right.
$$

where the second polynomial of $T_{1}\left(-\frac{1}{4}\right)$ is not squarefree.

Disjoint Squarefree Comprehensive Triangular Decomposition (DSCTD)

Definition

A disjoint squarefree comprehensive triangular decomposition of a constructible set CS is given by:

1. a finite partition \mathcal{C} of the parameter space \mathbf{K}^{d},
2. for each $C \in \mathcal{C}$ a set of squarefree regular systems \mathcal{R}_{C} such that for each $u \in C$:
2.1 each $R \in \mathcal{R}_{C}$ separates well at u,
2.2 the zero sets $Z(R(u))$, for $R \in \mathcal{R}_{C}$, are pairwise disjoint and

$$
C S(u)=\bigcup_{R \in \mathcal{R}_{C}} Z(R(u))
$$

DSCTD and complex root counting

Let $F:=\{x(1+y)-s=0, y(1+x)-s=0, x+y-s \neq 0\}$. A DSCTD of F is as follows:

$$
\begin{aligned}
& \text { 1. } s \neq 0, s \neq-\frac{1}{4}, s \neq \frac{3}{4} \longrightarrow\left\{R_{1}\right\} \\
& \text { 2. } s=0 \longrightarrow\left\{R_{2}, R_{3}\right\} \\
& \text { 3. } s=\frac{3}{4} \longrightarrow\left\{R_{4}\right\} \\
& \text { 4. } s=-\frac{1}{4} \longrightarrow\left\{R_{5}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& R_{1}:\left|\begin{array}{l}
T_{1}=\left\{\begin{array}{l}
(y+1) x-s \\
y^{2}+y-s \\
h_{1}=y-2 s+1
\end{array} \quad R_{2}:\right.
\end{array}\right| \begin{array}{l}
T_{2}=\left\{\begin{array}{l}
x+1 \\
y+1 \\
s
\end{array} \quad R_{3}:\right.
\end{array} \quad \begin{array}{l}
T_{3}=\left\{\begin{array}{l}
x \\
y \\
s \\
h_{3}=1
\end{array}, ~\right.
\end{array}
\end{aligned}
$$

Therefore, we conclude that: if $\left(s+\frac{1}{4}\right)\left(s-\frac{3}{4}\right)=0$, system (1) has 1 complex root; otherwise system (1) has 2 complex roots.

Real root classification of semi-algebraic system

A parametric semi-algebraic system (SAS) is of the following form:

$$
\left\{\begin{array}{l}
p_{1}(\mathbf{u}, \mathbf{x})=0, \ldots, p_{r}(\mathbf{u}, \mathbf{x})=0 \tag{2}\\
g_{1}(\mathbf{u}, \mathbf{x}) \geq 0, \ldots, g_{k}(\mathbf{u}, \mathbf{x}) \geq 0 \\
g_{k+1}(\mathbf{u}, \mathbf{x})>0, \ldots, g_{t}(\mathbf{u}, \mathbf{x})>0 \\
h_{1}(\mathbf{u}, \mathbf{x}) \neq 0, \ldots, h_{s}(\mathbf{u}, \mathbf{x}) \neq 0
\end{array}\right.
$$

Here all polynomials are with rational number coefficients. The system is denoted by a quadruple $[F, N, P, H$], where

- $F=\left[p_{1}, \ldots, p_{r}\right]$
- $N=\left[g_{1}, \ldots, g_{k}\right], P=\left[g_{k+1}, \ldots, g_{t}\right], H=\left[h_{1}, \ldots, h_{s}\right]$

For an integer n , the problem of real root classification is to provide conditions on parameters s.t. the system has exactly n distinct real solutions.

Delayed computation and border polynomial

In (L. Yang, X.R. Hou \& B.C. Xia, 01), the author proposed the idea of delayed computation for solving semi-algebraic systems:

- Decompose original system into a family of triangular systems
- Solve each sub-system forgetting degenerate parametric values
- Wrap all the degenerate values as a border polynomial
- Add the border polynomial into the input system and start over

Definition

Let $S(\mathbf{u}, \mathbf{x})$ be a parametric semi-algebraic system. A polynomial $R(\mathbf{u})$ is called a border polynomial of S if
(a) $S(u)$ has only finitely many real solutions when $R(u) \neq 0$
(b) the number of distinct real solutions of S is constant in each connected component of $R(\mathbf{u}) \neq 0$ in \mathbb{R}^{d}

Output of RealRootClassification

The output of RealRootClassification $[F, N, P, H, n]$ is a pair $[\Phi(\mathbf{u}), b p(\mathbf{u})]$ interpreted by the following theorem.
Theorem
Provided the border polynomial bp($\mathbf{u})$ does not vanish, the system has n distinct real solutions if and only if a logic formula $\Phi(\mathbf{u})$ holds.
Here the logic formula $\Phi(\mathbf{u})$ can be

- a quantifier free formula, like

$$
(a>0 \wedge a+b<0) \vee\left(a-b^{2}<0\right)
$$

- a quantifier free formula plus a description of which root of a regular chain, like $a>0$ and (b, c) is the first root of the regular chain $\left[c-b, b^{2}-1\right]$.
Such a description can be encoded as a regular semi-algebraic set.

Regular semi-algebraic set

Let $[Q, T, L]$ be a triple of $\mathbb{Q}[\mathbf{w}, \mathbf{y}]$ where

- $Q(\mathbf{w})$ is a quantifier-free formula defining a nonempty set S,
- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a squarefree regular chain, with main variables $\mathbf{y}=y_{1}, \cdots, y_{m}$ and free variables $\mathbf{w}=w_{1}, \ldots, w_{s}$
- for each point α of S, T separates well at α and $T(\alpha)$ has at least one real solution,
- L is a list of root indices of T

The zero set of $[Q, T, L]$ is defined as the set of $(\alpha, \beta) \in \mathbb{R}^{s+m}$ s.t.

- α satisfies Q and $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is a real solution of $T(\alpha, \mathbf{y})$
- if L is empty, then β is any real solution of $T(\alpha, \mathbf{y})$; otherwise there exists an L_{j} in L s.t. each β_{i} is the $L_{j, i}$-th real solution of $t_{i}\left(\alpha, \beta_{1}, \ldots, \beta_{i-1}, y_{i}\right)$ w.r.t y_{i}.

The zero set of $[Q, T, L]$ as defined above is called a regular semi-algebraic set.

Theorem
A regular semi-algebraic set is not empty and every semi-algebraic set can be decomposed as a finite union of regular semi-algebraic sets.

Algorithm: RealRootClassification
Input: A parametric semi-algebraic system S and a solution number to query
Output: Necessary and sufficient conditions on the parameters for the system to have a given number of solutions provided its border polynomial does not vanish. The conditions are encoded by a list of regular semi-algebraic sets.

Example

Given a system

$$
F:=\left\{\begin{array}{r}
x(y+1)-s=0 \\
y(x+1)-s=0 \\
x+y-1>0
\end{array}\right.
$$

By RealRootClassification, we get the following theorem
Theorem
Provided the border polynomial $b p=s(4 s+1)(4 s-3) \neq 0$, the system F has real solutions if and only if $4 s-3>0$.
Adding $b p=0$ into F, one finds that the system has no real solutions. So the final conclusion is that

Corollary
The system F has real solutions if and only if $4 s-3>0$.

Border polynomial and related notions (I)

Let $R=[T, h]$ be a squarefree regular system of $\mathbb{Q}[\mathbf{u}, \mathbf{x}]$, where $\mathbf{x}=\operatorname{mvar}(T)$. Denote

$$
b p:=\operatorname{sqrres}(\operatorname{sep}(T) h, T)
$$

Theorem
Considering the real solutions of R, then the polynomial bp is a border polynomial of the semi-algebraic system R.

Theorem
Considering the complex solutions of R, then the variety of bp is the minimal discriminant variety of the constructible set $Z(R)$.

Border polynomial and related notions (II)

Theorem

Let CS be a parametric constructible set of $\mathbb{Q}[\mathbf{u}, \mathbf{x}]$. Let d be the number of parameters. Assume that for almost all parameter values $u, C S(u)$ has finitely many complex solutions. Then one could compute a disjoint squarefree CTD of CS s.t.

- there exists one and only one cell C, whose complement in \mathbb{C}^{d} is a hypersurface
- the hypersurface is a discriminant variety of CS
- let $b p(\mathbf{u})$ be the squarefree polynomial defining the hypersurface, then bp is a border polynomial of the semi-algebraic set $C S \cap \mathbb{R}^{d}$

